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Abstract

An evaluation whether mass spectral data contain useful information for assessing similarity/diversity of drug
compounds is presented. A comparative study was carried out between Ward’s hierarchical agglomerative clustering,
based on the 2D Daylight fingerprints or on the mass spectra, of a small database of 66 synthetic substances. The
influence of normalization of the mass spectral data on the clustering result has also been studied. The results were
subsequently compared with an expert’s classification of the same small dataset, based on own evaluation according
to known structure and pharmacological activity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Because of the interest in both directed data-
base searching and compound selection for high
throughput screening of many hundreds of

thousands of compounds available in in-house
databases, quantification of chemical similarity
between compounds has become an important
subject in pharmaceutical research. However,
there is no generally agreed quantitative or even
qualitative definition of chemical diversity. Much
of the early work on similarity searching was
concerned with the development of quantitative
measures of structural resemblance between
chemical molecules and the use of such similarities
for clustering chemical databases. A fundamental
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question to be addressed is: what is the most
appropriate representation of a molecule for as-
sessment of chemical similarity? The selection of
suitable properties with which to characterize ev-
ery structure in a dataset has widely been studied
and 2D connectivity based structural descriptors
seem most effective for use in similarity calcula-
tions [1–3]. Two-dimensional structural descrip-
tors can be divided in two classes: structural keys
and hashed fingerprints. Structural keys were first
developed and rely on the use of a predefined
fragment dictionary. Molecular fingerprints dis-
pense with the fragment dictionary and define a
set of patterns to index. They constitute a repre-
sentation of the molecular structure generated

from the hashing of unique substructural paths.
Hashed fingerprints are for instance used in the
Daylight clustering package. Studies by Brown
and Martin showed that the Daylight 2D hashed
fingerprints encode a considerable amount of rele-
vant information. The Daylight fingerprints en-
code each atom’s type, all augmented atoms and
all paths of length 2–7 atoms [4–6]. Similarity
measures, based on such 2D structural finger-
prints, are the most commonly used in both simi-
larity searching and in clustering procedures [2]. A
range of numerical similarity definitions, which
are chemically meaningful, have been suggested
and implemented. The most commonly used mea-
sures are the Euclidean distance and the Tani-
moto coefficient. The latter is specific for binary
data and yields better results than distance mea-
sures for measuring the similarity between frag-
ment bit-strings [7].

There are many different methods that can be
used to cluster a dataset, but there are no a priori
guidelines as to which will be most appropriate
for a particular application domain. The most
widely used are the hierarchical agglomerative
methods and several have been applied to cluster
chemical structures [1,4,10].

Compound clustering techniques are applied
frequently in pharmaceutical industry laboratories
for performing diversity analyses on combinato-
rial libraries containing a large number of com-
pounds with known structure, to aid in the
selection of a representative subset of all the
compounds available. When the chemical struc-
tures are unknown, as may be the case in natural
product collections, the current clustering tech-
niques are, however, inapplicable and therefore
the knowledge of diversity of natural product
samples, which are often not completely pure as
well, is severely limited. The different compounds
must consequently be characterized by other de-
scriptor variables, e.g. experimental parameters.
These parameters must be easy to measure. Tech-
niques as mass spectrometry (MS), infrared spec-
troscopy (IR), nuclear magnetic resonance
spectroscopy (NMR), in combination with chro-
matographic techniques are capable of providing
structure-related information and these techniques
are thus likely candidates [11].

Table 1
List of synthetic substances

34 Testosterone1 Menthol
35 Caffeine2 Maltose

3 Glucose 36 Codeine
37 Mexiletine4 Saccharin
38 Lysergide5 Penicilline
39 Morphine6 Tetracycline

7 Amphetamine 40 Cocaine
8 Ephedrine 41 Lidocaine
9 Cholesterol 42 Lobeline
10 Aspartic 43 Lormetazepam
11 L-Asparagine 44 Pentoxifylline
12 DL-Leucine 45 Sulfapyridine
13 Isoleucine 46 4-Benzyl-phenol
14Tyrosine 47 Miconazole
15 Phenylalanine 48 Fenfluramine
16 Histamine 49 Nicardipine
17 Parathion 50 Oxeladin
18 Digitoxigenin 51 Flurazepam
19 Digitoxin 52 Terbutaline

53 Phenglutarimide20 Amiodarone
54 Procaine21 Melatonin
55 Sotalol22 Camphor
56 Pindolol23 Strychnine

24 Laurine 57 Timolol
58 Propranolol25 Guanidine

26 Estradiol 59 Metoprolol
27 Nicotine 60 Nadolol
28 1H-Purine 61Acebutolol
29 Dopamine 62 Prenalterol
30 Serotonin 63 Oxprenolol

64 Atenolol31 Heroine
32 Progesterone 65 Betaxolol
33 Androsterone 66 Alprenolol
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Fig. 1. (a) Score plot from the PCA of the raw mass spectral data, showing PC2 against PC1. For the numbering of the compounds,
see Table 1. (b) Score plot from the PCA of the raw mass spectral data, showing PC3 against PC1. Notation as in Fig. 1(a). (c) Score
plot from the PCA of the raw mass spectral data, showing PC4 against PC1. The numbering of the compounds is the same as in
Fig. 1(b).

In this paper we present a study aimed at
investigating whether clustering techniques, using
mass spectral data, can be applied for assessing
similarity/diversity of chemical compounds and
we investigate how much information is lost by
using these analytical characteristics instead of the
chemical structure for characterizing similarity/di-
versity. Ward’s hierarchical method was used to
cluster a small dataset of 66 synthetic substances,
using the Euclidean distance (mass spectral data)
and the Tanimoto coefficient (structural finger-
prints) as similarity measures, and the clusters
produced are evaluated to see whether spectral
data give a similar grouping of the set of com-
pounds as structural data.

2. Theory

2.1. Data

A small dataset of 66 synthetic substances,
among which a number of structurally similar
compounds (e.g. b-blockers, amino-acids) and a
number of arbitrarily chosen substances was se-
lected. Both mass spectra and structure are known
for all substances. All compounds are listed in
Table 1.

The mass spectra are electron impact spectra,
obtained from the NIST/EPA/NIH Mass Spectral
Database for PC. The mass spectra were available
in the form of peak lists, with the relative intensity
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of each fragment ion (m/q-ratio) mentioned. A
data matrix (66*390) was created from these peak
lists, where the rows correspond to the 66 com-
pounds and the columns to the 390 m/q (mass to
charge)-values. The values in the matrix are the
intensities of the respective ions and range from 0
(no peak for this ion) to 1000 (mass most impor-
tant peak).

The 2D structural fingerprints for the same
substances and the Tanimoto distance matrix
were obtained using the Daylight clustering
software.

2.2. Analysis of the data

2.2.1. Transformation of the mass spectral data
Transformation of the original data is widely

used in multivariate analysis to ensure that all the
variables under consideration are measured on a
comparable scale. To eliminate the possibility that
the contribution of a few of the variables that are
being used to characterize the molecules will mask
the contributions of all of the other variables, the
raw data matrix of descriptor values can be nor-
malized [1,7,13]. Because the intensities of the

Fig. 2. (a) Loading plot from the principal component analysis of the raw mass spectral data. The second loading vector is plotted
versus the first vector. (b) Loading plot from the PCA of the raw mass spectra, with the third loading vector plotted against the first
loading vector. (c) Loading plot from the PCA of the raw mass spectra, with the fourth loading vector plotted against the first
loading vector.
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Fig. 3. (a) Score plot from the PCA of the normalized mass spectra, with PC2 plotted against PC1. For the numbering of the
compounds, see Table 1. (b) Score plot from the PCA of the normalized mass spectra, showing PC3 against PC1. Notation as in
Fig. 3(a). (c) Score plot from the PCA of the normalized mass spectra, showing PC4 against PC1. Notation as in Fig. 3(b).

respective ions of each substance in our mass
spectral data matrix range from 0 to 1000, a
normalization of the raw data for total mass
equal to 100 is performed. Both the original and
normalized data were analyzed.

A logarithmic transformation has the advan-
tage that differences in variation are reduced so
that variables with similar relative variation will
have equal importance [14]. This transform is
applied on both raw and normalized data.

2.2.2. Principal component analysis (PCA)
To achieve a first visualization of the informa-

tion content in the data set, the data matrix, with
and without normalization, was analyzed with
principal component analysis (PCA) [14,15].

2.2.3. Cluster analysis
Numerous clustering methods have been de-

scribed in the literature, among whom the most
widely used are the hierarchical agglomerative
methods, which are non-overlapping and there-
fore no structure appears in more than one clus-
ter. A hierarchical clustering method produces a
classification in such a way that small clusters of
very similar compounds are included in larger and
larger clusters of less similar molecules. The clus-
ter hierarchy is mostly visualized as a dendro-
gram. Comparisons have shown Ward’s
hierarchical agglomerative method, which is used
in the present study, to be best able to separate
similar and dissimilar structures [1,4,7]. The objec-
tive of this method is to find at each stage those
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two clusters whose fusion gives the minimum
increase in the total within-groups error sum of
squares, which means minimum loss of information
at every step of fusing two groups [13]. Ward’s
method is applied with the Euclidean distance,
which is a measure of the geometric distance
between two structures in a multidimensional
space, as similarity measure. This approach is only
used for the mass spectral classification. Similarity
assessments of binary molecular representations
commonly use the Tanimoto coefficient, based on
the comparison of common bits in compared bit-
strings or fingerprints, as a measure of chemical
similarity [8,9,12]. The Tanimoto coefficient for
each pair of fingerprints gives a symmetrical matrix
of dissimilarities [16]. This approach is also imple-

mented in the Daylight software package. There-
fore, the Tanimoto distance matrix was used as
input for the hierarchical Ward’s clustering pro-
gram (Statistica, version 5.x) for the classification,
based on the 2D structural fingerprints.

2.3. Comparison of classifications

To measure quantitatively the similarity between
two different clusterings of the same set of objects,
a numerical measure of correspondence between
classifications is needed. The methodology used in
this study is based on the Wallace’s measure sw

(1983), based on a (k× l) contingency table for two
different partitions H (k groups) and G (l groups)
of a same set S of n objects.

Fig. 4. (a) PCA loading plot of the normalized mass spectra, showing the second loading vector against the first loading vector. (b)
PCA loading plot of the normalized mass spectra, with the third loading vector versus the first loading vector. (c) PCA loading plot
of the normalized mass spectra, with the fourth loading vector plotted against the first loading vector.
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Fig. 5. (a) Score plot from the PCA of the log transformed
mass spectra, showing PC2 against PC1. For the numbering of
the compounds, see Table 1. (b) Score plot from the PCA of
the log transformed mass spectra, showing PC3 against PC1.
The numbering of the compounds is the same as in Fig. 5(a).

measure is not symmetric, so that it should be
used only in cases where one solution can be
considered to be the correct one.

An alternative which avoids this asymmetry
and does not differ very much is the measure
proposed by Fowlkes and Mallows sFM (1983).

sFMG, H=
swG, HswH, G

Both measures have an upper bound 1 when
the two partitions are identical, and decrease with
increasing number of clusters [13].

Fig. 6. (a) Loading plot from the PCA of the log transformed
mass spectra, with the second vector plotted against the first
loading vector. (b) Loading plot from the PCA of the log
transformed mass spectra, with the third loading vector plot-
ted against the first loading vector.
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This similarity measure gives the probability
that a randomly chosen pair of objects that is
within the same class in one clustering (H) is also
in the same class in the second clustering (G). The
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Fig. 7. (a) Score plot from the PCA of the log transformed
normalized mass spectral data, showing PC2 against PC1. The
numbers correspond to the numbering in Table 1. (b) Score
plot from the PCA of the log transformed normalized mass
spectral data, showing PC3 against PC1. The numbering of the
compounds is the same as in Fig. 7(a).

content of the mass spectral data, the raw data
matrix was subjected to PCA. The first four prin-
cipal components (PCs) explain 40.05% of the
total variance. The first PC described 17.95% of
the variance and the second, third and fourth PC
8.98, 7.74 and 5.37%, respectively.

The score plot of PC1 against PC2, PC3 and
PC4 is shown in Fig. 1(a), (b) and (c), respec-
tively. The corresponding loadings are plotted in
Fig. 2(a), (b) and (c), respectively.

The score plots and the corresponding loading
plots show that the first PC is related to the
degree of total intensity of the fragment ions of

Fig. 8. (a) Loading plot from the PCA of the log transformed
normalized mass spectral data, with the second loading vector
plotted versus the first loading vector. (b) Loading plot from
the PCA of the log transformed normalized mass spectral
data, with the third loading vector plotted versus the first
loading vector.

3. Results and discussion

The data set of 66 synthetic compounds was
selected in such a way that it consists of a rela-
tively large class of highly similar compounds, e.g.
the b-blockers, some smaller or more vague
groups of similar substances and furthermore,
some arbitrarily chosen compounds, which are
structurally diverse.

3.1. PCA of the mass spectral data

To obtain a first impression of the information
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Fig. 9. (a) Score plot from the PCA of the 2D structural data, showing PC2 against PC1. The numbers correspond to the numbering
in Table 2. (b) Score plot from the PCA of the 2D structural data, showing PC3 against PC1. Notation as in Fig. 9(a). (c) Score
plot from the PCA of the 2D structural data, showing PC4 against PC1. Notation as in Fig. 9(b).

the substances or PC1 equals S (loading * inten-
sity) since all loadings are positive. The more
peaks of intensity near the most intense peak
(999) a substance has, the higher its total inten-
sity. Going from left to right in Fig. 1, one first
finds substances with mostly very low intensity
peaks, then substances with some abundant
peaks, and finally substances with several high
intensity peaks besides the basepeak.

An inspection of the score plot in Fig. 1(a)
shows that all b-blockers are clustered together in
the upper half of the plot. Also, most amino-acids
(aspartic acid, L-asparagine, DL-leucine,
isoleucine) are grouped together in the top region
of the plot. The group of steroids is situated in the
lower part of the same plot. Camphor and men-

thol appear closely clustered in the lowest region.
The second PC reflects the difference between
those substances with most prominent peaks at
m/q 72 (variable 57), 86 (variable 71) and 30
(variable 15) (positive scores) and the substances
that do not have such peaks or for which they are
not prominent. The peaks with m/q 72 (C4H10N+)
and m/q 86 (C5H12N+) arise from a-cleavage next
to the N-atom, with the loss of the largest alkyl
fragment. The resulting ions further break down,
giving rise to H2N+=CH2, m/q 30. PC2 also
represents a N-axis, since all chemical structures
that contain aliphatic nitrogen appear at the top
of the plot, whereas compounds that do not have
nitrogen in their chemical structure appear in the
lowest region. The substances appearing in the
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central region comprise either N-heterocycles and
aliphatic N or N-heterocyclic structures only. PC3
describes the contrast between substances with
prominent peaks at m/q 72 (variable 57) and m/q
86 (variable 71). This is seen in the loading plot of
Fig. 2(b). where variable 57 is at the top and
variable 71 is at the bottom of the plot. Corre-
spondingly, compounds with basepeak at m/q 72
(variable 57) appear in the upper half of Fig. 1(b),
such as, for instance, the b-blockers (No. 55, 56, 58,
59, 62, 63, 64, 65, 66), whereas compounds with
basepeak at m/q 86 (variable 71) appear in the
lower part of the same figure, for example com-
pounds No. 20, 41, 50, 51, 52, 54, 57. The fourth
PC only explains about 5.37% of the total variance.

The variables that we have already encountered
seem also to be important for PC4. The only new
variable that is of great importance for the fourth
dimension is m/q 44 (variable 29). This is seen in
Fig. 2(c) where this variable has a high positive
loading. Correspondingly, substances with base-
peak and/or very intense peaks of m/q 44 (variable
29) and with very weak or negligible peaks at m/q
86 (variable 71) and 72 (variable 57) are situated
together in the upper part of Fig. 1(c), while
substances that are characterized by very intense
peaks of high mass, basepeaks of high mass or at
m/q 72 and 86 appear in its lower part. Fragment
ions of m/q 44 can be associated with (CH3CH=
NH2)+, (O=C=NH2)+, (CH2=CHOH)+.

The PCA-analysis shows that the raw mass
spectral data indeed contains at least some charac-
teristic information, since similar compounds ap-
pear adjacent to each other in the resulting
PCA-plots.

The mass spectral data matrix, after normaliza-
tion, was also subjected to PCA, which resulted in
4 principal components. These PCs explained
27.66, 25.15, 7.37 and 4.50% of the total variance,
respectively, i.e. together 64.68%. Fig. 3(a), (b) and
(c) show the scores PC2 against PC1, PC3 against
PC1 and PC4 against PC1, respectively and Fig.
4(a), (b) and (c) the respective loadings.

The score plot of Fig. 3(a) shows that the
b-blockers are clustered together in the upper part
of the plot. The amino-acids appear together in the
lower part of the same figure.

An inspection of the scores and loadings plotted
in Figs. 3 and 4, respectively, shows that the first
PC no longer reflects the size differences between
the compounds investigated. After normalization
of the mass spectral data, PC1 describes the same
features as the second PC for the raw mass spectral
data. The same holds for PC2 and PC3, that explain
the same characteristic information as described by
PC3 and PC4, respectively, for the raw spectral
data. PC4 represents the contrast between basepeak
at m/q 30 (variable 15, CH2=NH2

+) and most
prominent peak at m/q 44 (variable 29).

Since the size effect of PC1 disappears after
normalization of the mass spectral data, it seems
better to work with normalized spectral data in-
stead of raw spectral data.

Table 2
Numbering of compounds, used for PCA on Daylight finger-
prints

1 Tyrosine 34 Lormetazepam
35 Lobeline2 Tetracycline
36 Lidocaine3 Testosterone
37 Laurine4 Terbutaline
38 L-Asparagine5 Sulfapyridine

6 Strychnine 39 Isoleucine
7 Sotalol 40 Histamine

41 Heroine8 Serotonin
9 Saccharin 42 Guanidine

43 Glucose10 Nicotine
11 Propranolol 44 Flurazepam
12 Progesterone 45 Fenfluramine
13 Procaine 46 Estradiol
14 Pindolol 47 Ephedrine
15 Phenylalanine 48 Dopamine
16 prenalterol 49 DL-leucine
17 IV-benzyl-Phenol 50 Digitoxin

51 Digitoxigenin18 Phenglutarimide
52 Codeine19 Pentoxifylline
53 Cocaine20 Penicilline
54 Cholesterol21 Parathion
55 Camphor22 Oxprenolol

23 Oxeladin 56 Caffeine
24 Nicardipine 57 Betaxolol

58 Atenolol25 Nadolol
26 Morphine 59 Aspartic

60 Androsterone27 Miconazole
28 Mexiletine 61 Amphetamine
29 Metoprolol 62 Amiodarone
30 Menthol 63 Alprenolol

64 Acebutolol31 Melatonin
32 Maltose 65 1H-Purine
33 Lysergide
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Fig. 10. (a) Ward’s hierarchical classification, based on raw mass spectral data. (b) Ward’s hierarchical clustering, based on
normalized mass spectral data. (c) Ward’s hierarchical clustering, based on 2D Daylight structural fingerprints. (d) Ward’s
hierarchical clustering obtained after applying a logarithmic transformation to the raw mass spectral data. (e) Ward’s hierarchical
clustering obtained after applying a logarithmic transformation to the normalized mass spectral data.
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Fig. 10. (Continued)

To prevent that the large values will have too
much influence on the classification and to en-
hance the effect of the smaller ones, a logarithmic
transformation was applied on the (raw and nor-

malized) mass spectral data matrix. In the trans-
formed space, the variables with a comparable
coefficient of variation will all have equal
importance.
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Fig. 10. (Continued)

The raw mass spectral data matrix, after log
transformation, was subsequently analyzed with
PCA. The PCA yielded a three-component model
that explained 61.10% (48.32%, 8.60%, 4.18%) of
the total variance. Figs. 5 and 6 (a) and (b) show
the score- and loading plots of the analysis.

An examination of the score plot in Fig. 5(a).
shows that all steroids are positioned in the lower
right part of the plot. The amino-acids are
grouped together in the upper left part of the
score plot. Both sugars, maltose and glucose, lie
closely clustered at the top of the plot and the
b-blockers appear together in the upper half of
the same score plot. The group of alkaloids
(codeine, heroine, morphine, lysergide) is situated
in the central region. Camphor and menthol, as
well as serotonin and melatonin, are located near
each other in the central part of the plot.

Looking at the score plots and loading plots
(Figs. 5 and 6) shows that the first PC is related to
the degree of fragmentation of the compounds
investigated. Compounds with many fragment
ions are clustered together to the far right in Fig.
5(a), whereas compounds with few fragment ions

appear in the left part of the same figure. The
second PC shows the contrast between substances
that are primarily characterized by fragment ions
of high mass and substances that are character-
ized by fragment peaks at low m/q-values. This is
also seen in Fig. 6(a) since all variables corre-
sponding to high m/q-values lie at the bottom of
Fig. 6(a), whereas the variables related to low
m/q-values appear at the top of the plot. The
third PC only explains about 4.18% of the total
variance. The interpretation of this component is
difficult since many variables seem to be impor-
tant for PC3. This is seen in the loading plot of
Fig. 6(b). Correspondingly, PC3 discriminates
compounds that have characteristic high intensity
peaks at m/q 63 (variable 48), 51 (variable 36), 78
(variable 63) or 91 (variable 76) from compounds
with specific high intensity peaks at m/q 56 (vari-
able 41), 57 (variable 42), 70 (variable 55).

The PCA-analysis carried out on the normal-
ized mass spectral data, after log transformation,
resulted in a three-component model explaining
54.32% of the total variance, the individual PC’s
describing 41.01%, 8.87% and 4.44% of the vari-
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Fig. 10. (Continued)

ance, respectively. Fig. 7(a) and (b) shows the
score plot of PC2 against PC1 and PC3 against
PC1, respectively. The corresponding loadings are
plotted in Fig. 8(a) and (b), respectively.

The score plot from Fig. 7(a) shows that all

steroids are closely clustered in the lower right
corner of the plot.

An examination of the scores and loadings
plotted in Figs. 7 and 8, respectively, shows that
the first PC describes the overall size of fragmen-
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Table 3
1: Comparison with two largest clusters of the respective clusterings; 2: comparison with four largest clusters of the clusterings, based
on mass spectra, and with six largest clusters of the clustering, based on Daylight fingerprints

Manually derived/normalized mass spectraManually derived/mass spectra Manually derived/Daylight fingerprint

0.40890.4089 0.42471
0.4125 0.42722 0.3638

tation of the compounds investigated since sub-
stances characterized by a lot of fragment ions are
situated together in the right part of Fig. 7(a),
such as, for instance, compounds No.9, 19, 32, 33,
34, 26, 58. Many variables enter into PC2 and
PC3 so that it is not possible to regard any one of
them as being mainly responsible for the forma-
tion of, respectively, the second and third PC.
PC2 primarily reflects differences in the fragmen-
tation patterns. Compounds that are character-
ized by a lot of high intensity fragment peaks at
low m/q-values appear in the lower part of Fig.
7(a), whereas compounds with few fragment ions
of high mass appear in the upper half of the same
figure. The third PC discriminates substances with
most intense peak at m/q 60 (variable 45), 72
(variable 57), 73 (variable 58) or 86 (variable 86)
from the rest. This is seen in Fig. 8(b) where these
variables are in the top region.

3.2. PCA of the 2D structural data

PCA was also carried out, using the 2D struc-
tural fingerprints. The result was a PC-model with
four principal components. These components de-
scribed in total 61.68% of the variance in the data
set. The separate components described 43.97,
7.87, 5.35 and 4.49% of the variance in the data,
respectively. Fig. 9(a) shows the score plot of PC1
against PC2. The third and fourth components
are visualized in the same way in Fig. 9(b) and (c),
respectively. The numbering of the compounds is
reported in Table 2.

An inspection of the score plot of Fig. 9(b)
shows that some small groups of similar sub-
stances can be found. The alkaloids morphine,
codeine and heroine are situated together at the
bottom edge of the figure. The steroids (testos-
teron, progesteron, androsteron, cholesterol, digi-

toxin, digitoxigenin) are clustered together to the
upper right, as well as some amino-acids (L-as-
paragin, isoleucine, aspartic acid). The b-blockers
appear in the central region of the same plot.

The first PC is again a size component which
reflects the differences in molecular structure be-
tween the compounds investigated. Going from
left to right, the order of complexity goes from
linear and small size (e.g. guanidine, No. 42) to
larger molecular structures, containing more com-
plex aromatic groups, such as, for instance com-
pounds No. 2, 6, 20, 52, 41. A fingerprint
describes the overall size and chemical complexity
of a molecule, since the hashed fragments encode
all unique linear, branched, and cyclic fragments,
including overlapping fragments. If a particular
fragment is present in a molecule, then a corre-
sponding bit is set to 1 in the bit string. Typically,
small molecules set few bits to 1, and, as
molecules get larger and more complicated, more
bits are 1, so that the count of ones is higher.

PC2 separates alkaloid compounds with typical
‘morphine’ structure (compounds No. 20, 41, 52),
corresponding to a more circular shape of ring
structures all linked together, and other aromatic
substances, with more linearly connected ring
structures, like, for example compounds No. 50,

Table 4
1: Comparison with two largest clusters of the respective
clusterings; 2: comparison with three largest clusters of the
respective clusterings; 3: comparison with five largest clusters
of the respective clusterings

Manually derived/ Manually derived/log normalized
mass spectralog mass spectra

0.39131 0.4210
0.45472 0.3188

3 0.4617 0.2928
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Table 5
1: Comparison of two largest clusters; 2: comparison of three largest clusters; 3: comparison of six largest clusters of the clustering,
based on Daylight fingerprint with four largest clusters of the clustering, based on mass spectra; 4: comparison of four largest
clusters

Mass spectra/Daylight finger- Normalized mass spectra/Daylight fingerprint Mass spectra/normalized mass spectra
print

1 0.64720.6472 1
2 0.49660.5040 0.9761

0.42060.44763
4 0.8361

51, 54, 12, from substances that are for the most
part aliphatic. PC3 discriminates those com-
pounds with a ‘corticoid’ structure from the mor-
phine-derivatives. This is seen in Fig. 9(b), since the
steroids appear in the upper half of the figure,
whereas the alkaloids appear in the lower part. PC4
clusters all the b-blockers in the upper part of Fig.
9(c), while substances with N-containing aromatic
5- and 6-ring structures are situated more in its
lower part, for instance, lormetazepam and
flurazepam, are closely grouped in the bottom
region, as well as melatonin and serotonin.

3.3. Qualitati6e comparison of hierarchical
Ward’s classifications

Hierarchical clustering methods produce classifi-
cations in which small clusters of very similar
objects are nested within larger clusters containing
more diverse structures [4]. The resulting classifica-
tions are, to a certain extent, in accordance with
this. The hierarchical classifications, based on
Ward’s method and on raw mass spectral data and
normalized mass spectral data, are shown in Fig.
10(a) and (b), respectively. The Ward’s clustering,
based on 2D Daylight structural fingerprints is
shown in Fig. 10(c). Obviously, the variables used
to describe the objects also have a great influence
on how the objects will be classified. In order to
determine the differences, the composition of the
clusters of all three Ward’s hierarchical clusterings
has been mutually compared.

An investigation of the classification results
shows that in all three clusterings, three large
clusters, each consisting of many small subclusters
are formed. The group of b-blockers is found as

such, in one big cluster, in all three clusterings. Both
other large clusters are more heterogeneous from
the point of view of chemical classes, but consist
each of smaller, more homogeneous subgroups,
containing similar compounds. This holds for cam-
phor and menthol, the amino-acids (asparagine,
leucine and isoleucine), codeine and morphine,
maltose and digitoxine, which are similar and
closely clustered.

In both clusterings, based on mass spectra, as
well as in the clustering, based on Daylight finger-
prints, most of the corticoids (progesteron, andros-
teron, testosteron, digitoxigenin, cholesterol) are
found in one subcluster. Flurazepam and
lormetazepam, as well as melatonine and sero-
tonine are contained in one subgroup in the classifi-
cation, based on structural fingerprints.

The Ward’s hierarchical classifications obtained
after applying a logarithmic transformation to the
(raw and normalized) mass spectral data are shown
in Fig. 10(d) and (e), respectively. By examination
of the clustering results, it can be seen readily that
in both clusterings, three large clusters, each con-

Table 6
1: Comparison of two largest clusters; 2: comparison of three
largest clusters; 3: comparison of six largest clusters of the
clustering, based on Daylight fingerprint with five largest
clusters of the clustering, based on mass spectra after log
transformation

Log mass spectra/Day- Log normalized mass spec-
light fingerprint tra/Daylight fingerprint

0.7907 0.75411
0.48760.44312

0.41363 0.3176
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sisting of many small subclusters are formed.
Clearly separated structural groups are present in
the tree, for example all corticoids are in one big
cluster in both clusterings. The composition of
both other large clusters of chemical structures is
considerably more heterogeneous, however with
some small subgroups of very similar compounds.
An example of this kind is the small cluster of
amino-acids (leucine, isoleucine, aspartic acid, as-
paragine) or camphor and menthol, codeine and
heroine. Another example is given by serotonin
and melatonin as well as glucose and maltose that
are linked together in the clustering, based on log
transformed raw mass spectral data. Also, all
b-blockers are located near each other in one
smaller subcluster in this respective Ward’s clas-
sification. However, in the clustering, based on
log transformed normalized mass spectra, they
appear more dispersed over the tree-structure.

In conclusion, it seems that the clustering with
mass spectra is equally good as that obtained with
Daylight structural fingerprints and that normal-
ization of the mass spectral data does not have a
major influence on the clustering result. At first
sight therefore, it seems that one does not lose a
lot of information using mass spectral data in-
stead of structural data. Finally, it can be said
that the clustering of the log transformed mass
spectral data looks somehow different than the
clustering of the original mass spectral data. How-
ever, the results are not better or worse than the
classifications based on the original mass spectral
data.

3.4. Quantitati6e comparison

A more quantitative comparison is possible us-
ing the measure of Wallace as similarity measure.
It was performed between the different Ward’s
clusterings mutually and a classification, based on
expert judgement, according to known structure
and pharmacological activities of the set of 66
synthetic substances.

3.4.1. Comparison of Ward’s clustering and the
classification, based on expert judgement

The different cluster solutions were evaluated
by comparing them with the expert’s classification

of the same data set, shown in Fig. 10(f). This
classification consists of six clusters. It should be
noted that, due to the choice of substances, some
of which are relatively little related to others,
other classifications might be proposed by other
experts.

The stability of a cluster solution is probably
different for different numbers of clusters, but, as
already mentioned (2.3), the interpretation of the
resulting partitioning depends on the characteris-
tics of the chosen measure. It is known that the
greater the number of clusters, the more Wallace’s
measure tends to yield a smaller similarity. How-
ever, whether a measure of similarity of, for ex-
ample, 0.8 for two clusterings is good or not
cannot be answered with this one single value. It
can only be answered by user evaluation. The
results of this comparative study are presented in
Tables 3 and 4.

From a comparative study between the expert’s
classification and the different computer-assisted
Ward’s hierarchical clusterings, no major distinc-
tion can be made between the different compari-
sons, so that we can conclude that a classification,
based on mass spectra compares well with that
based on 2D Daylight fingerprints. Only a slight
difference appears between the clusterings, based
on raw and normalized mass spectral data, with
the latter producing better results. However, the
clustering of the log transformed mass spectral
data compares most with the expert’s classifica-
tion and the Ward’s hierarchical classification,
based on log transformed normalized mass spec-
tral data worst.

Therefore, mass spectral classification seems to
be of similar quality as classification, based on
structural fingerprints, and it seems that not much
information is lost using analytical characteristics
instead of structure for characterizing similarity.
And, log transformation does not seem necessary
for good clustering of mass spectral data.

The numerical results for the comparison of the
different Ward’s hierarchical clusterings between
them are reported in Tables 5 and 6.

Comparing the two largest clusters of each
classification, both clusterings, based on raw and
normalized mass spectra are nearly identical.
Also, their similarity to the Ward’s hierarchical
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classification, based on 2D structural Daylight
fingerprints is almost the same. The same conclu-
sion can be made when comparing the three
largest clusters or the six largest clusters of the
clustering, based on 2D structural fingerprints
with the four largest clusters of the clustering,
based on (raw and normalized) mass spectra with-
out log transformation. Generally speaking, after
log transformation, the respective Ward’s hierar-
chical classifications seem to compare less with
the clustering, based on 2D Daylight fingerprints.

4. Conclusion

This study illustrates the use of clustering tech-
niques to analyse whether experimental mass
spectral parameters can be used for assessing sim-
ilarity/diversity of chemical compounds. This was
done by comparing a Ward’s classification, based
on the structural fingerprints, with a Ward’s clas-
sification, based on the mass spectral data of the
same compounds, and by validating both against
an expert’s classification of the same data set.

From our results, it seems that both structural
parameters (using Daylight fingerprints) and ex-
perimental mass spectral parameters are able to
group compounds into structural similar classes,
so that it seems no information is lost, using mass
spectra instead of fragments based 2D finger-
prints. Also, normalization of the mass spectral
data seems to have a (slight) positive effect on the
clustering result and a logarithmic transformation
does not seem necessary for good clustering.

Briefly we may conclude that there is a reason-
able chance that mass spectrometry, in combina-
tion with other spectroscopic and
chromatographic techniques, can give good re-
sults for assessing similarity/diversity to a library
of natural products, the structure of which is not
known
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